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Abstract

Currently there are a number of different mathematical models for phase equilibria in aqueous two-phase systems
available. This diversity can create some confusion for model users, since most models seem to perform reasonably well.
Choosing a model, thus, becomes rather a difficult task. In trying to address this problem, the principal models and the
relevant theory available are reviewed. A discussion of osmotic viral expansions, lattice theory, group contribution, scaling
ideas, excluded volume, electrostatics and other modeling approaches is presented. The strengths of the different approaches
are critically evaluated and suggestions offered. Choosing a model, however, requires sophistication because each model is
typically best at representing only a few particular aspects of system behavior, and the intended use of the model must be
considered. Some suggestions for future work are also given.
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1. Introduction

The fact that two or more phases form in water
with the addition of incompatible polymers or poly-
mers and salts has been well known for several
decades. Interested readers are referred to excellent
reviews on the development of the subject by
Albertsson [1,2] and by Walter et al. [3]. The
experimental aspects of these phenomena have been
carefully studied and have been well documented by
Albertsson [1] and by Walter et al. [3]. The fact that
almost any solute will show partitioning behavior
between the liquid phases has also been well known,
and the experimental aspects of this behavior have
also been well studied and documented [1,3]. Walter
et al. [4] have comprehensively reviewed recent
progress in the field of aqueous two-phase systems.
Very recently, Zaslavsky [5] has published a mono-
graph covering most topics in the area of aqueous
two-phase partitioning. Zaslavsky gives a compila-
tion of experimental results together with his inter-
pretations of these results.

One should note that an understanding of the
known experimental results in terms of fundamental
molecular properties, molecular parameters and in-
teractions has started to emerge only recently, per-
haps over the last decade. The objective of this
article is then to present an overview of the most
fundamental existing theories of phase formation and
phase equilibria. Solute partitioning will be the
subject of another article. However, this article is not
meant to be an exhaustive compilation of every piece
of work that has been published on the subject.
Rather, the aim is to explain the principal ideas that
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.................................................... 20

..................................................... 23

...................................................... 25

have emerged, and it is, thus, representative rather
than encyclopedic. The topic of aqueous two phase
systems formed with polyelectrolytes as phase form-
ing polymers is not discussed. The reason is that |
am not aware of any theoretical model for the phase
behavior of these types of systems. The development
of such a model, however, is entirely possible.

There are roughly four schools of thought in the
area of modeling of phase formation: (1) models
based on osmotic viral expansions descended from
the original work of Edmond and Ogston, (2) models
based on extensions of lattice theories such as the
Flory—Huggins theory, (3) models incorporating
integral equation theory as a major element and (4)
models that do not fall into the above categories,
such as group contribution schemes and excluded
volume approximations. All of these models will
often have added-on expressions for electrostatic
forces to account for the effect of interactions
involving charged species.

2. Polymer solution regimes

All of the aqueous two-phase systems known are
solutions of polymers. It is, therefore, appropriate to
initiate a discussion on the theory of aqueous two-
phase systems by first briefly reviewing the behavior
of polymer solutions. In particular this will focus on
the differences between dilute and concentrated
polymer solutions.

When the concentration of polymer molecules in a
solution is approaching zero there are always many
layers of solvent molecules separating the polymer
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Dilute Solution: . Concentrated Solution:

Fig. 1. In a dilute polymer solution the polymer coils are separated
from each other and the relevant length scale is the end-to-end
distance (R). In a concentrated solution the polymer coils inter-
twine and the relevant length scale is the correlation length or
mesh size (&).

molecules from each other. This is the regime of a
dilute polymer solution illustrated in Fig. 1. It should
be noted, however, that if we use polymers of higher
and higher molecular mass, the volume occupied by
each polymer molecule becomes larger and larger,
and the concentration range over which a dilute
regime exists becomes very small although the
number of polymer molecules per unit volume may
still be very small. Whether the solution regime is
dilute or concentrated, depends not only on the molar
concentration of the polymer but also on its molecu-
lar mass. As the volumes occupied by individual
polymer molecules start to overlap, because their
concentration increases for a given polymer molecu-
lar mass, the polymer chains start to entangle and the
solution smoothly evolves from a collection of
individual polymer molecules to a mesh-like struc-
ture as illustrated in Fig. 1. It is possible to do a
simple calculation for the polymer concentration ¢*
called the crossover concentration at which the
polymer chains just start to overlap. One such
calculation has been presented by Abbott et al. [6]
for poly(ethylene glycol)s (PEGs) in water. Al-
though, there are, in fact, several slightly different
ways of performing the calculation [7] all of which
give similar results. The calculation that we present
here is based on the results from the monograph by
Des Cloizeaux and Jannink {7] which we believe to
be most accurate. The relevant expressions are

3/2

=", R=25105K, ()

where R is the end-to-end distance of the polymer
chain and R, is the radius of gyration of the polymer.
The relation between R and R, is an approximate
result obtained for a very long linear polymer with
excluded volume [7]. The radius of gyration R, can
be measured from static light scattering experiments
{8]. For the case of polyethylene oxide p in water,
the radii of gyration data of Cabane and Duplessix
[9,10] can be represented as a function of polymer
molecular mass by a fitted equation:

R,=0.13245 M (2)

where R, is given in A and M, is the molecular mass
of the polymer (g/mol). This data is used in calculat-
ing the crossover curve of Fig. 2. The concentrations
have been converted to mass fractions w, according
to w,=~M,c*/(d,+Mc*) where d, is the mass
density of pure water. A similar calculation can be
done for dextrans using the data of Senti et al. [11].
However, we did not include it in Fig. 2. The reason
is that the resulting curve is uninteresting as it lies
well to the right on the plot for all of the dextrans
commonly in use due to their relatively high molecu-
lar masses.

As pointed out by Abbott et al. [6], the existence
of the crossover concentration plays an important
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Fig. 2. Theoretically calculated curve for the polymer mass
fraction corresponding to the cross over composition, which is the
composition at which the solution regime changes from dilute to
concentrated in aqueous mixtures of poly(ethylene glycol)s at
ambient conditions.
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role in the choice of model, and in the physical
picture used to represent the state of a particular
solution. For example, in a dilute solution the
important length scale is R which means that accord-
ing to the scaling hypothesis [12], the molecular
interactions between polymer chains can be repre-
sented as functions of R. In a concentrated solution
the important length scale is the correlation length of
the polymer mesh ¢ Again the scaling hypothesis
{12] holds that the molecular interactions can be
expressed in terms of £ which correlates with the
average distance between monomers in the polymer
mesh. However, it should again be pointed out that
these polymer solutions are very dilute in terms of
the number of solute molecules present. For exam-
ple, the cross-over concentration for PEG 1000 is
approximately 0.6 mol 17" and that for PEG 8000 is
2-107" mol/1. The fact that the solution is dilute also
has important implications. These facts will be
referred to repeatedly throughout the rest of this
review.

3. Prediction of two-phase formation

If one assumes that the phases in an aqueous
two-phase system are at equilibrium, then predicting
the formation of two phases and predicting the
equilibrium state (composition, density, etc.) can be
done from the equality of the component chemical
potentials and system mass balances. In performing
this calculation we further assume that the polymers
are represented by a single component with the
average molecular mass of the polymer. Then for a
system consisting of a solvent s and two solutes i
and j,

(T, P.c.c)=p(T,P,ci.c)) (3a)
wi (T, P,c},c])=pT, P.c,, c)) (3b)
ui(T,P,c!,c!)=piT, P, cl,c}) (3¢)

where u; is the chemical potential of solute i in
phase k [upper (u) or lower ()] and cf( is the
composition (mol volume ™' or mol/kg) of solute i in
phase k.

The mass balances represent the fact that all
material added to the system must be in either the

upper or the lower phase. Thus, the total mass of
added solvent W,, the total mass W, of added solute i
and the total mass W, of added solute j are distributed
according to

W=w'W'+w W (42)

W=w'W"'+w,W' (4b)
—..u u R 1

W=wW +wW (4¢c)

where w¥ is the mass fraction of solute i in phase k
defined by wi=W;/(W! +Wf+Wf), where W) is
the mass of solute i in phase k, and W* is the total
mass of all components in phase k. The solute
composition in either mol volume ™" or mol kg ™' can
be calculated rather easily from the mass fractions
and phase density.

There is ample evidence to the fact that the
polymers used in aqueous two-phase extraction are
polydisperse [1,3]. There is also ample evidence that
the polymers fractionate between the two phases
[13], e.g., the higher-molecular-mass PEGs preferen-
tially partition to the PEG phase and so on for the
dextrans. Therefore, the molecular mass of the
polymer in the upper and in the lower phase is
different, and neither is equal to the overall molecu-
lar mass of the polymer [13-16]. To portray this
effect better, let us consider a two-phase system with
a very large PEG phase and a very small dextran
phase. For such a system, the average molecular
mass of the PEG in the PEG phase would approxi-
mately equal the average overall molecular mass of
the PEG added to the system. But, the average
molecular mass of the dextran in the dextran phase
would be greater than the average overall molecular
mass of the dextran added to the system. The reason
for this effect is that the low molecular mass
fractions of the dextran are more soluble in the PEG
phase than the high molecular mass fractions.

As illustrated in Fig. 3, the polydispersity and the
consequent phase fractionation of the polymers will
cause the binodial curve to shift when plotted in a
three-component phase diagram. The reason for this
effect is that as the overall composition is varied
along a fixed tie line, the fractionation of the
polymers causes a change in the molecular mass of
the polymers actually present in each phase. This
shift in the plot would not be observed in a multi-
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Monodisperse

Tie Line
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Fig. 3. The effect of the polydispersity of phase forming polymers
on the binodial curve of aqueous two-phase systems. The tie line
connects the composition of two phases in equilibrium.

dimensional plot where one coordinate was given to
each of the polymer molecular fractions present.
However, in a three-component plot, this effect gives
the impression that the composition of the phases
depends on the mass or volume ratio of the phases.

The simplest and possibly the most effective
technique to include the effect of polydispersity and
phase fractionation into phase diagram calculations is
the pseudo-component method [17-19]. Essentially,
the method amounts to replacing the many individual
components of different molecular masses contained
in a polymer with a continuous statistical distribution
of molecular masses, and then using the distribution
in a mathematically consistent quadrature procedure
to choose a limited number of components (say five)
of a specified molecular mass which can be used to
represent the polydisperse polymer. This technique
was adapted for used with two-phase systems in
conjunction with the UNIQUAC model [14-16], but
it is widely applicable with other models also. A
brief summary of the procedure taken from the work
of Sandler’s group at Delaware [14-16] will be
presented here. Thus, for each polydisperse polymer
i we assume that the molecular mass distribution is
given by the Lansing—Kraemer function

1
FM,)=——7 expl— (1/87) In*(M,/M, )] (5)

i

where B, and M are adjustable parameters, M, is the
molecular mass of polymer fraction i and 7 is the
number pi. Using this distribution one can obtain an

expression for the number average M, and the mass
average M, molecular mass of the polymer for a
polymer

f F(M)dM
M— =M, expl— 181 (6)
" LF(M)dM
fMF(M)dM
;;—- T =M, expll/B]] (7
" jF(M)dM

These relations can be used to obtain values for the
distribution parameters 8. and M, from experimen-
tally measured average polymer ‘molecular masses
M, and M, . We proceed by stating that the average
value of a 'function 8 (M,) weighted by this dis-
tribution is given by

f F,(M,)6(M,) dM, =
]

B—?lr”z L expl—1/B87 In* (M, /M )16(M,) dM,  (8)
Making the substitutions of x;,=1/8; In (M,;/M,, ) and
G(x,)=6(M,) one can use Gauss—Hermite quadrature
[20] to replace the integral with a sum over n terms,
where n is the number of pseudo-components or
polymer fractions to be used. The appropriate ex-
pression is

J' exP[_xiz]G(xz) dx; = 2 WkiG(zk,) 9
- k=1

where the z;, are the zeros of the Hermite polyno-
mials and W, are the weight factors in the expansion.
The Hermite polynomials H, are defined by

nf2 ( )n—2m

H®m=n! 2 (1) (10)
m=0

m!(n — 2m)!
The numerical values of the z;, and of the W, are
found in the literature [21]. The W can also be
calculated from

n+1

172
n'm (Zk')

W,=—"""75" 11
H, T (h

Once the z, and the W, are found, the pseudo-
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component mass fraction of any k of the n pseudo-
components of component i can be found from

w, =W, | 2 W, (12)

e
and its molecular mass can be calculated from

Mh:Mk! exp[(,B,zAl)] (13)

The above-mentioned mathematical procedure
amounts to breaking up each of the polydisperse
polymers added to the system into n representative
fractions, and treating the system as if one were
adding not one but n chemically similar components
differing only in molecular mass. After this process
is accomplished, the phase equilibrium calculation
proceeds as before except that instead of three
chemical potential equalities and mass balances,
there are 1+2n equations for a three-component
System.

The inclusion of polydispersity into the calculation
of phase diagrams makes a small but still significant
contribution as illustrated in Fig. 3. It also probably
makes an even greater contribution to the partition-
ing of proteins.

4. Chemical thermodynamics

The objective of this section is to provide a basic
review of the most important thermodynamic quan-
tities and concepts to be used in the discussions that
follow. Although most of the material is well known,
it was felt that this review would aid readers not
familiar with the subject in understanding the various
thermodynamic concepts. Those wishing further
details are referred to any of the many excellent
monographs and text books on chemical thermo-
dynamics.

The most fundamental thermodynamic criteria for
phase equilibrium in mixtures is the equality of the
component chemical potentials in all the phases
present in the system. There are, however, a number
of auxiliary functions commonly used in both model-
ing and experiment. The Gibbs free energy G is the
most fundamental quantity for phase-equilibrium
problems at ordinary conditions, i.e., constant tem-
perature and pressure. The molar Gibbs free energy

of any particular phase (G in Jmol ' mixture) is
related to the component chemical potential u; by

G(T, P xy xy, xp) = x (T, Poxy, xp, x5.0)
+ x5 o (T, Poxy, Xy, X5.0)
+ (T Poxy, xy, x50) +
(14)

where g, is the chemical potential of component i
defined by

ONG
m (T, Pox,xy, )= (TM)T b N (15a)

T,P x _ (NG 15b
ﬂz( s 4y “l‘ XZv"') - aNz TP Ny Ny ( )

where T is the temperature, P is the pressure, N is
the total number of moles in the phase, N, is the
number of moles of component i in the phase, and x,
is the mole fraction of component { in the phase.

The component chemical potential defines a num-
ber of related auxiliary functions such as the thermo-
dynamic activity of a component given by

w(T, Pox o xy, . )= pui (T, Pox) x5, 0.0)
+RT Ina(T, P x,, x5, ...;x),x0...0) (16)

i

where w; is the reference chemical potential of
component i, a, is the thermodynamic activity of
component i, and the x:’ values are the reference
compositions of all the components in the solution.
For an ideal solution, the thermodynamic activity
(a;=x,) is equal to the mole fraction.

The reference chemical potential w; is a subtle
matter. The idea is to choose a reference chemical
potential that has either very simple or no com-
position dependence and that is as close to the actual
state of the component i in the mixture as possible.
For a solvent, component 1, such as water which can
exist as a liquid at the usual temperatures and
pressures of the experiment, the reference chemical
potential w (7, P, 1,0, ...) is that of pure solvent. The
reference composition is x;=1, x;=0, x;=0, etc.
For solutes (components 2, 3, etc.) such as polymers,
salts, or biomolecules that can not usuaily exist as a
liquid at the same conditions, the reference chemical
potential x(7, P, 1,0, ...) is usually that of the solute
at infinite dilution in the solvent, and the reference
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composition is again x, =1, x,=0, x,=0, etc. Note
that the reference chemical potentials cancel out of
the equations when the chemical potentials in differ-
ent phases are set equal in phase equilibrium calcula-
tions. For this reason, one can always use the
thermodynamic activities in place of the chemical
potentials in phase equilibrium calculations.

In the development of models for the Gibbs free
energy of mixtures, an auxiliary function called the
excess Gibbs free energy G° is usually employed.
This function is the difference between the Gibbs
free energy of the real mixture G and that of an ideal
mixture G'™ at the same temperature, pressure and
composition. The defining expression for G° is

G(T,P,x,,x,,..) =G, P, x|, x,,...)
= G™(T, P, x,, Xy, ...)
=2 X = 2" (17)

where the superscript im stands for ideal mixture.
Inserting expressions for the Gibbs free energy in
terms of chemical potentials and thermodynamic
activities gives

G =2, x(u’+RT Ina,)~ 2, x(u’ +RT Inx,)
a.
=RT D x, 1n<;’) (18)

The thermodynamic activities are related to the
excess Gibbs free energy by

a, 1 [oNG*
—)=== 19
In (x] > RT < ON, J1.PN,N;.... (192)

a, 1 [dNG*
2)=— (= 19b
In (xz) RT( N, Jrrnn,. (19b)

In some situations such as a polymer solution, the
Gibbs free energy of mixing AG,,, rather than the
excess Gibbs free energy G° is frequently employed.
The Gibbs free energy of mixing is the difference
between the real solution Gibbs free energy and the
free energy of the mixture components as pure liquid
for the solvent and as liquids at infinite dilution for
the sparingly soluble solutes. The definition for
AG,,, is

AG,. (T, P x x5, ..) =G, Px,,x,..)
- x,u(T, P, 1,0,.)
—x,u5(T, P, 1,0,..)— ..
(20)

The Gibbs free energy of mixing is related to the
excess Gibbs free energy by the expression

AG,. =G +RT 2x Inx, (21)

Lastly, I would like to briefly mention the thermo-
dynamic consistency relations given below by the
cross-derivative equality for component chemical
potentials:

Y
am;

I
T.Pam ) = i) (22)

om; | 7.p.m, i

and ithe Gibbs—Duhem equation, which at constant
temperature and pressure is

022 m, Al 23

where for both equations m; is the molality of
component i, y, is the chemical potential of com-
ponent i, and where the summation is taken over all
components including the solvent. All model expres-
sions and all equilibrinum experimental data for the
component chemical potentials must satisfy the cross
derivative relations and the Gibbs—Duhem equation.
Mathematical expressions or experimental data that
do not satisfy these requirements violate the laws of
thermodynamics.

5. Osmotic viral expansions

The use of osmotic viral expansions to represent
the properties of aqueous two-phase systems gained
popularity starting with the work of Edmond and
Ogston [22,23]. The reasons for this popularity are
simply that the resulting expressions model the
known experimental behavior with reasonable ac-
curacy, they are mathematically simple, and the
physical interpretation of the model parameters is
relatively simple. Theory tells us, however, that there
are two different osmotic viral expansions, one based
on the work of McMillan and Mayer [24] and the
other on the work of Hill [25-27]. There are subtle
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but very important differences between these two
expansions which are often not recognized.

This class of theories gives expressions for the
solution thermodynamic properties and, in particular,
for the chemical potential of solutes in terms of a
power series in solute composition, either
mol volume ™', mol kg_1 solvent, or mol mol ' sol-
vent. The coefficients in the expansion represent the
molecular interactions between small groups of
solutes, e.g., pairs, triplets, and so on. The role of the
solvent is a very subtle matter which is handled
differently in each of the two theories, as will be
explained later. Being expansions in composition,
these theories are strictly applicable only at very low
solute concentration. But, since the concentrations of
solutes and in particular polymers are rather low
even at the cross-over concentration, it is then fair to
say that the theories are at least approximately
applicable to the solutions commonly encountered in
aqueous two-phase extraction.

In polymer solutions, the interpretation of the
coefficients in terms of molecular interactions
changes as we move from a dilute solution regime to
a concentrated solution regime. The change in the
molecular interactions with solution regime implies,
that the model for the osmotic viral coefficients must
also be changed with solution regime. This intro-
duces complications in the theory which detract from
the attractive simplicity of this class of models.
Although, the effect is often ignored in practice,
perhaps in an effort to preserve the simplicity of the
approach. Though, it should be realized that the
terms dilute and concentrated have rather a special
meaning here because the number of moles of
solutes per unit volume is always very small.

5.1. The McMillan—Mayer theory

The theory of solutions derived by McMillan and
Mayer [24] gives the thermodynamic properties of a
multicomponent system as a power series in solute
concentration in moles volume ' or molarity. The
coefficients of the series directly represent the inter-
actions between small groups of solute molecules,
i.e., pairs, triplets, and so on, in otherwise pure
solvent. Thus, the chemical potential u, of a solute i
in a solution of a solvent s and another solute j is
given by

,‘Li(Tﬂ My, C;s Cj) _ /.L?(T, P, 0, 0) 4]
RT = RT ne;
+2B(T, p)c, +2B,(T, p)c,

+... 24)

where g, is the solvent chemical potential, u; is the
solute chemical potential at zero solute concentra-
tion, ¢, is a solute concentration in moles of solute
per volume and B, is the McMillan-Mayer osmotic
second viral coefficient for the interaction between a
molecule of solute i and a molecule of solute j in
otherwise pure solvent. It should be noted that the
chemical potential of the solvent has to be obtained
from the Gibbs—Duhem equation using expressions
for the solute chemical potentials. However, the
above expression for the solute chemical potentials is
given at constant 7 and g, whereas the Gibbs—
Duhem equation is written at constant 7 and P. It s,
therefore, necessary to convert these expressions to
constant P as outlined below before the Gibbs—
Duhem equation is used.

In the McMillan—Mayer theory the solvent is
treated as a featureless background continuum; a
stage in which the solute molecules exist and interact
with each other. This result is rigorous and it
simplifies the statistical mechanics of the problem
enormously. It also makes it possible to give a
simple interpretation to the McMillan—-Mayer os-
motic viral coefficients in terms of an energy of
interaction between groups of two (u,.j), three (u,.jk)
or more molecules in pure solvent. For example (see
Fig. 4), the second viral coefficient is given by

Polymer
Protein

®

Solvent

ubi Eg uPP
i u

ion
ip Polymer

Fig. 4. Relative sizes of molecules and energies of interaction u;;
for proteins or biopolymers (b), polymers (p) and ions in a salt i,
all in the presence of a solvent.
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B,=—-2m f [exp(—u,;/kT)— 1] dw, do, dr, dr,
0

(25)

where k is the Boltzmann constant, and where the
integration is performed over all possible orientations
and positions of molecules i and j. The important
issue here is that B involves only interactions
between a molecule i and a molecule j, where i and j
can be any solute but not the solvent,

The difficulty with this approach is that in order
for the solvent to be treated as background, the
thermodynamic state of the solvent must be held
constant even as the concentration of solute changes,
and this means that g, must be held constant, which
is why it appears in the functional dependence of u,.
A consequence of this fact is that one can not use the
above expression for y, directly in a phase equilib-
rium or other calculation at a constant pressure, say
at laboratory pressure. Rather, the expression for w,
must be converted from a state at constant p to a
state at constant P, ie., from wm(T, u,c, c;) to
w(T, P, c,,c;) which is what is required for the
calculation. The easiest procedure to accomplish this
change [28,29] is to consider that u_ is constant
because the solution is in osmotic equilibrium with
pure solvent across a semi-permeable membrane as
illustrated in Fig. 5. Then the solvent chemical
potential u (T, P+mc,c ].) =g(T, P)=constant,
since T and P are constant. Constant y_ then implies
that the solution pressure is P+ 7. Then constant
pressure u(7, P, ¢, ¢;) can be obtained from

(T, pg, ¢ )= (T, Pt c,, c;) (26a)
(T, P, c,,c;)=pu(T,P+mcc))

P

+ f V,-(T, Pc, c;)dpP (26b)

P+m

where 7 is the osmotic pressure and V, is the partial
molar volume of solute i in solution. One can with
reasonable accuracy assume that V, is independent of
pressure and equal to its room pressure value, and
for polymers but not for salts one can further assume
that it is independent of composition and equal to its
infinite dllutlon value V' ;(T). There are correlations
giving V', (1) for PEGs and dextrans [30] as a

g?:ssgz:‘et Osmotic Equilibrium
1
TP T, P+ | T,P
c, ¢ ¢, ¢ I Solvent
1
|

Fig. 5. Contrast of a solution at constant temperature and pressure
to a solution in osmotic equilibrium with its own solvent through a
membrane permeable to the solvent only. Note that the tempera-
ture and compositions of both solutions are the same but that the
pressures differ.

function of polymer molecular mass. For salts, the
reader is referred to the work of Millero [31]. This
osmotic pressure correction is often ignored in phase
equilibrium calculations involving aqueous two-
phase systems. The reason is that there is a partial
cancellation of the correction for the top and bottom
phases when the chemical potentials in the top and
bottom phases are set equal to each other.

The McMillan—Mayer theory has been used to
calculate phase diagrams in aqueous two-phase
system by a number of different research groups over
the years. The McMillan-Mayer osmotic viral co-
efficients have been experimentally measured with a
variety of techniques. Thus, Edmond and Ogston
[22] experimentally determined values for the co-
efficients from osmotic pressure, sedimentation
equilibria and phase diagram critical point. The
Berkeley Group [32,33] experimentally measured the
coefficients using low-angle laser light scattering and
vapor pressure measurements. The group at Darm-
stadt [34-36] measured the coefficients by vapor
pressure osmometry and membrane osmometry. It
should be noted that the calculations of Edmond and
Ogston and those of the Berkeley group assume that
the polymers are monodisperse while those of the
Darmstadt group do include the polydispersity and
fractionation of the polymers. To the best of my
knowledge, the aforementioned osmotic pressure
correction to the component chemical potentials has
been neglected in all of these phase diagram calcula-
tions.

5.2. The Hill theory: molecular interaction scaling

The theory derived by Hill [25-27] seems superfi-
cially similar to that of McMillan and Mayer [24],
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and indeed both give the component chemical po-
tentials as a power series in solute composition.
However, the theory of Hill gives the component
chemical potentials at constant temperature and
pressure rather than constant solvent chemical po-
tential u , and it, therefore, requires no osmotic
pressure correction. The power series is an expansion
in solute molality m, (mol solute kg ' solvent or mol
solute mol ' solvent) rather than concentration
(moles of solute per volume). The conversion be-
tween these two units of molality is 1000/M,, where
M, is the solvent molecular mass. The chemical
potential u; of a solute i in a solution of a solvent s
and another solute j is given by

u(T, Pm,m))  u’(T,P,0,0)
RT = RT +Inm,
+2B,(T, Pym,+2B (T, P)m;+. ..
(27)

where P is the system pressure, u; is the reference
solute chemical potential at zero solute concentra-
tion, m, is the solute molality in mol solute mol ™'
solvent, and Eij is the Hill osmotic second viral
coefficient for the interaction between a molecule of
solute i and a molecule of ; in pure solvent. It should
be noted again that the chemical potential of the
solvent has to be obtained from the Gibbs—Duhem
equation using the above expression for the solute
chemical potentials.

Since the solvent chemical potential is not kept
constant as solute is added to the solution, the
coefficients in the theory of Hill no longer have the
simple interpretation given above for McMillan—
Mayer osmotic viral coefficients. In addition to
including interactions between solute molecules,
these coefficients explicitly include interactions be-
tween solute and solvent molecules. The Hill os-
motic viral coefficients B',.j are certainly accessible
experimentally by any of the techniques commonly
used to measure thermodynamic activities such as
vapor pressure lowering, osmometry, isopiestic ex-
periments, light scattering, etc. [37]. Kabiri-Badr
[38], for example, used isopiestically measured water
activities to evaluate Hill coefficients in several
aqueous salt—polymer mixtures. There is also a
simple and rigorous thermodynamic relation [27,37]
between the McMillan-Mayer coefficients B, and

the Hill coefficients Eu- For the second viral co-
efficients the relation is

- P —0 -0

B,=>"(2B,~V -V +KRT) (28)
where p? is the molar density of pure solvent, V? is
the partial molar volume of solute i at infinite
dilution and K ,=(—1/V)aV/dP|, is the isothermal
compressibility of pure solvent. The last contribution
is negligible at ordinary conditions because the
isothermal compressibility is rather small for liquids.
The partial molar volumes for the polymers [30] and
salts [31] commonly used in aqueous two-phase
extraction are available from the literature. For
polymers the partial molar volumes are available as

o

correlations of the form V; = V ..N, where N, is the
degree of polymerization and V:”. is the formal
partial molar volume of a monomer. In cases where
partial molar volumes are not available in the
literature, they are obtainable from solution density
data which generally are easy to measure. It should
be noted from the above expression that converting a
McMillan—Mayer osmotic viral coefficient B;; to a
Hill osmotic viral coefficient B,; can not be done by
just changing the units from mol volume ' to
mol kg ™.

To model the Hill osmotic viral coefficients, one
can construct a theoretically simple model for the
McMillan—-Mayer coefficients and then relate it to
the Hill coefficients according to the above relation.
Scaling approaches have proven particularly useful
in this effort. Again the reader is referred to Fig. 4.
One possible approach is to consider that to a first
approximation the interaction between two polymer
molecules i and j can be treated as that between two
rigid spherical blobs of diameter R, and R,. Then
statistical mechanics [27,39] gives an interaction
coefficient of the form

27 (R,. + Rj>3
Bif:T 3 . (29)

To a fair approximation one can assume that the
quantities R, and R; are equal to the end-to-end
distance of the polymer coil. Then, scaling theory
based on the renormalization group applied to poly-
mer solutions [40—42] tells us that the end-to-end
distances R, and R, are related to the degrees of
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polymerization (N, and N,) for polymers i and j by
the expression

R=bN', R=bN' (30)

where » is a universal exponent valid for all poly-
mers provided they are sufficiently long, and where
b, and b; are proportionality constants evaluated
from experimental data. The value of » has been
calculated by various means; thus, LeGuillou and
Zinn-Justin [41] give a value of 0.5885 from a
theoretical expansion, Douglas et al. [42] give a
value of 0.592 from a different theoretical expansion,
and Kabiri-Badr [38] and Cabezas et al. [30] ob-
tained an empirical value of 0.593 from experimental
isopiestic data on aqueous solutions of PEG. It
should be noted that all of the values are in re-
markably good agreement.

When a salt s is present in aqueous solution it
dissolves into ions i which are charged. It is then
necessary to include an electrostatic term such as that
from the Debye—Hiickel theory [43] or any of a
number of other electrolyte solution models [44] to
account for the interactions between the charged ions
(also see Section 9). The interaction between the salt
and a polymer p or another neutral solute is then
given as a sum over the interactions of the ions with
the polymer. The McMillan—Mayer viral coefficient
B, for the case of a strong electrolyte is given by

1
B, (T, ,)=— 2 uB, (T, 1) (31)
where v, is the number of ions in the salt, e.g., 3 for
Na,SO,, v is the number of ions of type i, e.g., 2 for
Na® in Na,SO,, and B,, is the ion-polymer osmotic
viral coefficient, and the sum is taken over all the
ions of the salt.

A scaling argument similar in spirit to that for
polymers can be made for the interaction between a
neutral polymer molecule p and an ion or a small
molecule i. One assumes that the ion being small can
sample the entire length of the polymer chain (see
Fig. 4). The McMillan—Mayer osmotic viral coeffi-
cient B, is then approximately proportional to the
length L of the polymer chain which 1s itself
proportional to the degree of polymerization N,. The
resulting expression is
B,,p=bl,pL=b. N, (32)

ip''p

where b,, is a proportionality constant evaluated
from experimental data. The scaling hypothesis
indicates that the exponent 7 should have a value of
about one and be universal for all polymers. Kabiri-
Badr [38] found that a value of 1.033 for the
exponent 7 was adequate to reproduce the phase
diagrams for three different molecular masses of
poly(ethylene glycol) and three different salts at
ambient conditions. Since Kabiri-Badr's value of
1.033 is within 3% from one, his result tends to
support the scaling hypothesis.

6. Lattice theory

The idea of modeling macromolecular liquid
mixtures in terms of a crystal lattice originated with
a number of research groups during the 1930s and
1940s. Guggenheim [45] gives an excellent review
of the work from this era in his monograph on
mixtures. Ochs [46] reviewed this material in histori-
cal perspective and related it to more recent develop-
ments. This class of theories is attractive because of
simplicity since in a lattice one can distribute and
redistribute (see Fig. 6) the macromolecules and the
small molecules until all the possible arrangements
or configurations have been examined. One can, in
fact, easily count or at least estimate the total number
of possible configurations {2 for the system. The

Fig. 6. Illustration of the distribution of chains of two different
types polymers and a solvent in a square lattice. Entropies are
obtained from lattices by counting all of the possible configura-
tions of the polymers and the solvent on the lattice.
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number of configurations together with the famous
Boltzmann relation, —S=klIn {2, between entropy S
and {2 give a combinatorial entropy for the mixture.
It is also possible to develop expressions for the
enthalpy by counting the number of energetic inter-
actions between solute molecules or solute and
solvent molecules. From the entropy and the en-
thalpy the Gibbs free energy can be calculated which
contains all the thermodynamic information for the
mixture. The main difficulty with these approaches is
that in general, the entropy of a lattice, and, in fact,
any entropy obtained by some combinatorial count-
ing procedure can not be made equal to that of a
liquid because it has too much order. A second
problem particular to aqueous mixtures is that en-
thalpy effects are usually rather important, whereas
the attractiveness of the theory is its ability to give
the entropy by a simple procedure. Although it must
be accepted that modern developments have amelior-
ated these difficulties, the fundamental problems still
remain.

From a practical point of view, this class of
theories is formulated assuming concentrated poly-
mer solutions, and the expressions are not expan-
sions in solute concentration. Therefore, the question
of applicability as the solution becomes more con-
centrated that arose in connection with osmotic viral
expansions is avoided entirely. There is, however,
serious doubt that the same lattice expressions are
applicable in very dilute solutions where there exists
large regions of pure solvent between polymer coils.
Extension of these ideas, particularly in their more
modern version, to aqueous two phase systems is
natural, and some of the more important recent
developments in this area are summarized below.

6.1. The Flory—Huggins theory and its extensions

The classical polymer solution theory of Flory
[47.48] and Huggins [49], or Huggins and Flory,
depending on the source, and its various modifica-
tions have been the basis of several efforts [50,51] to
model the phase behavior of two-polymer aqueous
two-phase systems. Benge [52] gives an excellent
critical review of the application of the Flory—Hug-
gins theory to polymer solutions and two-phase
systems covering work up to about 1986. Benge
notes that the Flory—Huggins interaction parameters

X; show composition dependence in two-polymer
aqueous two-phase systems. More recently, the
research group at Lund [53-55] has modified the
Evers et al. [56] extension of the Flory—Huggins
theory by allowing the monomers to have internal
degrees of freedom. This modification gives an
interaction parameter ), which is temperature and
composition dependent addressing some of the prob-
lems pointed out by Benge. This approach gives
reasonably correct phase behavior with temperature
and composition for two-polymer aqueous two phase
systems.

The attractiveness of the Flory—Huggins and
related theories include their relative simplicity, the
fact that they give qualitatively good predictions or
at least correlations for phase behavior, and their
ability to give mechanistic insight into the phase
formation process. For example, in the original form
of the Flory—Huggins theory a combinatorial expres-
sion is obtained for the entropy of mixing AS,;, by
considering all the ways of distributing molecules of
macromolecular solutes and molecules of solvent on
a lattice (see Fig. 6). The expression for the entropy
is

AS.,=—k2 NInd (33)
where k is the Boltzmann constant, N, is the number
of moles of component i, &, is the volume fraction of
component i, and where the summation is performed
over all the components present including the sol-
vent. The internal energy of mixing AU ;. is then
given by

AU, =kT 2 2 NBx, (34)

t J

where ;, is an interaction parameter between com-
ponents i and j. Finally, these two expressions are
combined to give the Helmholtz free energy of
mixing AA_;, which is assumed to be equal to the
Gibbs free energy of mixing AG,,;, from which all of
the necessary solution thermodynamics can be ob-

tained. The expression for the free energy is
AGmix AA mix _A A 35
RT - RT - Umix T Smix ( )

The approximate equality above indicates that this
relation is strictly valid only for situations where the
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volume change of mixing is zero or at least negligib-
ly small. This is usually the case for liquid mixtures
away from the critical region.

6.2. The UNIQUAC model: polydispersity

The research group at Delaware [14-16,57,58] has
developed a model for the phase behavior of two-
polymer aqueous two-phase systems based on the
UNIQUAC [59] equation. The UNIQUAC model is
a lattice theory which incorporates the concept of
local composition and Guggenheim’s quasi-chemical
approximation. Incidentally, UNIQUAC is an ac-
ronym for UNIversal QUAsi-Chemical. The Dela-
ware group also included the effect on the phase
diagram due to the polydispersity of the polymers.
This was done using the pseudo-component pro-
cedure aiready outlined in the section on prediction
of two-phase formation. Since the solute mole frac-
tions in polymer solutions are rather small, the
UNIQUAC equation was rewritten [60] in terms of
mass fractions w,.

As originally developed by Wilson [61], the local
composition concept was used to evaluate the vol-
ume fractions in the Flory—-Huggins theory. The
local composition concept simply states that due to
the differences in the molecular interactions between
dissimilar types of molecules, the composition in the
neighborhood of any molecule is different from the
overall bulk composition in the mixture. This ‘‘local
composition” around a molecule implies that there is
a deviation from the random mixing of dissimilar
molecules in a mixture. It further states that “‘local
compositions” are proportional to a Boltzmann type
factor where the argument in the exponential is a
difference in interaction energies. The quasi-chemi-
cal approximation of Guggenheim [45] treats the
differences in interaction between similar and dis-
similar molecules as a quasi-chemical reaction. This
can be illustrated by considering the interactions
between molecules as a molecular exchange, (a—
a)+(b—b)=2(a—b), in a mixture of molecules of
type a and b. Guggenheim gives expressions for the
enthalpy and the entropy of the mixture from these
considerations.

The UNIQUAC expression for the thermodynamic
activity a; of a component j in a mixture is

z 6;
= r_ ' - !
Ing,=lng¢, = 7 M;a, ln<¢7)+Mjl.j
J

0' ’ ’ r
-M, 7}; lkwA_+quj(1 ~In ; 0,7,

0,7

k E grlnka> ,

where w, 1s the mass fraction of component & and ¢ j'
is the mass-based volume fraction of component j
given by

’

row,

b =< 37
2

riw;

where r; is a mass based volume parameter for
component j which is fitted to data, z is the lattice
coordination number usually set equal to 10, M, is
the molecular mass of component j, qj' is a mass
based surface area parameter for component j that is
fitted to data, @ j' is the mass-based surface area
fraction of component j given by

7
)
4q; w,/

6] :m (38)
j

[} is given by

1,'=§(r;—q,-’)~(r}—z%) 39

and 7, is given by

ool gl

where the difference U, —U,, is a molecular inter-
action parameter that is fitted to data.

This model, particularly when polymer polydis-
persity is included, reproduces phase diagrams for
two-polymer aqueous two-phase systems accurately.
These good results are in part due to careful fitting of
the model parameters using modern maximum likeli-
hood techniques, and to inclusion of the effect of
polymer polydispersity. Some of the difficulties with
this class of approaches include assigning clear
physical significance to the parameters and their
values, and the lack of uniqueness of the parameter
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values, i.e., the fact that there probably exist more
than one set of values which give equally good
results.

6.3. Polymer blob rescaling

The blob rescaling approach originated at the
Korean Advanced Institute of Science and Technolo-
gy [62-64]. It is based on De Gennes’ concept [12]
that a long polymer molecule can be considered a
sequence of regions or blobs which have essentially
independent motions. As illustrated in Fig. 7, these
blobs may consist of several monomers and attached
solvents. These assumptions have the collective
effect of transforming a polymer molecule into a
collection of small pseudo- independent blobs which
can be approximately treated as small molecules.
These blobs, however, are not exactly independent,
since the number of blobs is related to the number of
polymer and solvent molecules by mass conservation
equations. This means that the number of blobs can
not be varied independently of solvent and polymer.
The thermodynamic implications are that the chemi-
cal potential equalities which define phase equilib-
rium still have to be stated in terms of polymers and
solvent not blobs, although the molecular thermo-
dynamic or statistical mechanical model for the
chemical potentials may be constructed in terms of
blobs and their interactions. As illustrated in Fig. 8
for the case of lattice based theories, this involves
renormalizing the lattice, i.e., redefining the original
lattice where the fundamental length is the size of a

Fig. 7. Splitting of polymer chains in solution into a series of
statistically independent or semi-independent blobs each consist-
ing of several monomers with attached solvent molecules.
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Fig. 8. Renormalization of a Jattice with characteristic size £ into
a lattice with characteristic size £, where £ is a multiple of {. A
polymer chain with monomers of size ¢ distributed on this lattice
can be redefined as a chain of blobs of size ¢ each consisting of
several monomers.

monomer { into a new lattice where there is a new
fundamental length & which is the size of a blob.
Then, a small molecule lattice-based model such as
the UNIQUAC [59], the NRTL [65] or some other
model can be used to represent the polymer and
solvent chemical potential in terms of interactions
between blobs and blobs and solvent. Incidentally,
NRTL is an acronym for Non-Random Two-Liquid.
For purposes of illustration, the UNIQUAC equation
for a mixture of components 1 and 2 in this case is
written as

G* D, D,

RT =N lnx—l+x2 ln;;

<

6, t,
+5ax ln—qb_l + g%, ln*a)—2 —q,x, In (6,
+60,75)) — qx, In (6, + 6,7,) (41)

where x, is the mol fraction of blob i, @ is the
volume fraction of blob i, € is the area fraction of
blob i, z is the coordination number of the lattice set
equal to 10, g, is the surface area parameter of blob i

and 7, is defined by

Uu.—u )
_ Y s
'rl./.—exp( RT (42)

where U, —U,, represents the difference between the
energy of interaction of a molecule of type i and a
molecule of type j and two molecules of type j.
Notice that 7,7 7,.

The NRTL equation detined below has a simpler
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mathematical structure as compared to the UN-
IQUAC model. It predates the UNIQUAC by nearly
a decade. The expression is
7,G,,
1212 ) (43)

G* 7,Gy;
o = XX,
RT x, +x,G,, x, +x,G,

where x; is the mol fraction of blob i and 7, is
defined by
U,—U.,

=TRT (44)
where U; — U, is again the difference in the energy
of interaction between a molecule of type i and a
molecule of type j and two molecules of type j.
Again note that 7,7 7,. Finally, G, is defined by

]
G, =exp(—~ay;) (45)

where a;; is the non-randomness parameter and «;; =

.

' The model parameters, whether the UNIQUAC or
the NRTL equation is used, are all fitted to ex-
perimental data, usually phase diagram data. The
approach does seem to reproduce with reasonable
accuracy the composition dependence and the tem-
perature dependence of mixtures of one and two
polymers in a solvent including aqueous mixtures of
PEG and dextran. The main difficulties with the
approach are again difficulty in assigning physical
significance to the parameter values, and the fact that
the parameter values are not unique.

7. Integral equation theory

A very recent and unique approach is that of the
Berkeley group [66]. This approach combines inte-
gral equation theory, a hard sphere equation of state,
perturbation theory, the McMillan-Mayer osmotic
viral expansion and other elements. All of these are
brought together to derive a very general expression
for a modified excess Helmholtz free energy, Ar,.
for an aqueous mixture of polymers, saits and
proteins. Ay, is defined as Ag, =A—Ny uy,, Where
A is the Helmholtz free energy of the mixture, N, is
the number of moles of water and uy is the
chemical potential of pure water. The complexity of
this method prevents the inclusion of a complete

description within the space of this review. Instead, a
description of the underlying principles will be
attempted. This modified excess Helmholtz free
energy is divided into five additive contributions.

+A]

Ex.ve

+ A

Ex.cc

Allix:A!IEx‘hx_*Al +A’

Ex.na Ex.ic

(46)

where Ag,,. is the contribution from repulsive
molecular forces which are modeled here as hard
sphere interactions, A, ,, is a first-order correction
for non-additivity of molecular sizes, A, , repre-
sents the contribution from ionic charging, Ag, .
embodies the interactions between all charged
species in the mixture and AL, . contains the effect
from short-range non-electrostatic interactions such
as dipoles, dispersion, etc. The non-additivity correc-
tion, A__,., is necessary because the expression for
the hard sphere contribution, A;_, , assumes that the
polymer coils and the proteins interact as impene-
trable spheres which is not exactly true. For instance,
a small protein can penetrate inside the polymer coil,
and the polymer coil at any rate is not a rigid body.
This model also assumes that the liquid mixture is
incompressible, i.e., it has no pressure dependence,
which is essentially equivalent to assuming that the
Helmholtz and Gibbs free energies are equal, i.e.,
G=A. This means that we can use A in place of G in
all of the expressions previously developed in the
section on chemical thermodynamics. In this way
one can easily obtain expressions for chemical
potentials and, in principle, all other thermodynamic
properties except volumes.

The model development then proceeds by con-
structing expressions for the five contributions to A,
by various appropriate methods. For example, the
expression for the hard sphere contribution, A, .. is
developed from the Boublik [67] and Mansoori et al.
[68] equation of state for hard spheres. The Boublik
and Mansoori et al. equation of state is obtained
from the solution of the Ornstein—~Zernike integral
equation [69] for the case of hard spheres. The
expression for the non-additivity correction, A;_ .,
to the hard sphere contribution is obtained from a
perturbation theory [70,71]. The contribution from
ion charging, Ay, .. is calculated from the expres-
sion of Born [72]. The expression for the contribu-
tion from charge—charge interaction between the
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ions, Ag, .. is obtained from the solution to the
Ornstein—Zernike integral equation [69] using the
mean spherical approximation [73~77]. Application
of the mean spherical approximation to electrolytes
is further discussed in the section on electrolyte
solutions. Lastly, the contribution from short-range
interactions between molecules in solution, A, ., is
obtained from the McMillan-Mayer [24] osmotic
viral expansion. All of the contributions to the
modified Helmholtz free energy are carefully con-
structed to be consistent with the McMillan—Mayer
system (T, py, €, C,, ...), and the resulting expres-
sions for the chemical potentials need to be con-
verted to constant pressure (7, P, ¢, c,, ...) for use in
calculations as pointed out earlier. Unfortunately, no
effort is made to include this rigorous but simple
conversion in the model. The reason that the model
still works adequately is probably due to: [1] the
partial cancellation of the conversion in phase
equilibrium calculations as discussed in the section
on McMillan-Mayer theory, and [2] absorption of
the conversion by the empirically adjusted model
parameters.

The resulting overall model is, perhaps, the most
complete and sophisticated available in the literature
except as noted above. It is, however, a fairly
complex model. Although, it has to be admitted that
the model does accurately represent the behavior of
rather a complex system so that the model’s com-
plexity is not unjustified. The model parameters are
varied including species sizes, osmotic viral coeffi-
cients, etc. Overall, the model represents the phase
behavior of polymer—polymer and salt—polymer
aqueous two-phase systems, and the partitioning of
proteins quite adequately which is a very significant
accomplishment.

8. Other models

These are models which do not easily fall into one
of the categories outlined above. Although they may
well have elements derived from them. For example,
the free energy equations for the group contribution
model are like osmotic viral expansions, and the
concepts underlying the excluded volume theory are
similar to those in lattice theories. Still the new and
important element in each case, e.g., group contribu-

tion or excluded volume, does not easily fall into the
category of a viral expansion or a lattice theory. For
purposes of this article, Therefore, these approaches
have been classified under a separate category.

8.1. Group contribution

A very recent development is the molecular
thermodynamic model developed by the group at
Kaiserslautern [78]. The model expressions give the
excess Gibbs free energy G° of an aqueous mixture
of two polymers or a polymer and a salt as a power
series in relative surface fraction @), of the solutes i
where the coefficients A, A, and A, represent the
energy of interaction per contact between pairs and
triplets of solute molecules respectively. As ex-
plained in the section on chemical thermodynamics,
the excess Gibbs free energy is defined as the
difference between the free energy of a real mixture
and that of an ideal mixture both at the same
temperature, pressure and composition. It is usually
assumed that the contribution of the solvent to the
ideal mixture free energy is given by the Lewis—
Randall rule while the contribution from solutes is
assumed to be given by Henry’s law. This method is
essentially a viral expansion using relative surface
fraction as a concentration measure. An electrostatic
expression G is added to the above when ions or
other charged species are present. This may seem
rather an unusual idea to those normally accustomed
to dealing with molality and molarity as a measure of
concentration. However, one must consider that
interactions between molecules do occur through the
surface of the molecules so that surface fraction is
indeed a logical and valid means of measuring
concentration. For a multicomponent mixture, the
expression for the excess Gibbs free energy is

G° 1000
n RT

6)@@
( )222@@@
Gc,LR
Y RT (47)

where the sums are taken over all the components
present, n,, is the number of moles of water, M, is
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the molecular mass of water, and the relative surface
fraction @, is calculated from

mq;

@i:
Z m;q;
7

and the sum is again taken over all the components
present, m; is the molality of component i and g, is
the surface parameter of component i. The molecules
of each of the components is then broken down into
groups (methyls, ethers, ethyls, etc.), and the inter-
action parameters A; and B, are expressed in terms
of summations over the groups making up the
molecules of each of the components. The expres-
sion for A, is

Ar’j=2 Z[ @i”@;”a,‘, (49)

k

(48)

where a,, is an interaction parameter between groups
k and [ that depends on temperature, and where the
weighing factor @!" is the surface fraction of group
k in molecule i which is calculated from
@
v, Ok

0y =<— — 50
CTS Log, (50)
1

and where the summation is taken over the groups in
molecule i, V;:) is the number of groups of type k in
molecule i and Q, is the surface area of group k. The
model parameters are the surface area of each group
Q, and the temperature-dependent group interaction
a,;, which have to be fitted to experimental data. The
principal practical advantage of this method is that
the model parameters are formulated in terms of the
groups making up the component molecules, and,
since most molecules are made up from a relatively
small number of groups, it is then possible to include
a very large number of components with a small
number of parameter values.

8.2. Excluded volume theory

The group at Sheffield [79,80] has developed a
very simple model for the binodial curve in poly-
mer—polymer aqueous two-phase systems based on
statistical geometrical arguments [81]. This approach
represents a significant departure from the models
presented above. The theory is based on the follow-

ing arguments: (1) the two phases are saturated with
respect to each of the polymers, ie., all of the
volume is occupied by molecules of either one of the
polymers including perhaps the water of hydration;
(2) the concentration of each polymer in each phase
is determined by how many molecules of each
polymer fit into the volume of the phase. Fig. 9 gives
a sketch representing the physical situation. Accord-
ing to the theory, however, the volume occupied by a
polymer molecule is an effective volume rather than
a molecular volume. This accounts for the fact that
the polymer molecule is likely to have a shell of
hydrated water around it.

From a practical point, the most important result
from the theory is the following simple one parame-
ter expression for the binodial curve. This result is in
principle applicable over the entire span of the phase
diagram from the top to the bottom phase. The
expression is

* Y, x Wi
ln(vijo ﬁ;)""vjioﬁi‘ (51)
This expression relates the mass fractions w; and w,
of solutes i and j to each other in terms of the solute
molecular masses M; and M, and one fitted parameter
V¥, which represents the effective excluded volume
of molecules i and j in the mixture. To use this
expression, for example, assume that w,=w_ . and

W;=w,., and simply insert a value for w,, and

2 &
¥

Fig. 9. The concept of excluded volume for a solution of two
different types of polymer coils and proteins (solid ellipses). Note
that large coils require more volume than an equivalent mass of
the small coils. The proteins require even less volume than the
same mass of either coils.
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calculate w ., from the equation. One should careful-
ly note, however, that the expression is applicable to
only one phase at a time, e.g., if w_, is a top phase
composition then w,,, must also be a top phase
composition. This result has been extended [80] to
include the polydispersity of the polymers by using
averaged molecular masses and an averaged effective
excluded volume.

The expression can be used to calculate a binodial
curve but not the equilibrium composition of the
phases. To calculate the equilibrium compositions,
the authors use the empirical osmotic viral expansion
given below in conjunction to the above expression
for the binodial curve applied to both the top and the
bottom phases. This gives three equations to solve
for the four unknown compositions m/|, m1, m® and
m? so that a value must be chosen for one of the four
variables. The osmotic viral expansion is

30 2 Qo2
T T - T2 . T2 T T
m, +m2+—2-(m2) +T(m2) +a, mm,

a0 5> oz 2
=m?+m§+—'~2 (sz) -I>—2 (sz)ﬁ-ﬁ—aHm?m;3
(52)

where m!, ml, m’ and m% are the molalities of
components 1 and 2 in the top and bottom phases,
respectively, and a,,, a,, and a, , are empirical
interaction coefficients related to osmotic viral co-
efficients. The interaction coefficients are determined
from other independent measurements.

With regards to osmotic viral expansions, the
authors note that some of the mathematical forms for
these expansions commonly in use violate thermo-
dynamic consistency requirements. In particular,
mention is made of violating the cross-derivative
tests for the chemical potentials and the Gibbs—
Duhem equation. However, it must be kept in mind
here that although a set of empirical expressions for
the chemical potentials in a mixture could indeed
violate thermodynamic consistency, this problem
does not exist for theoretically derived osmotic viral
expansions from statistical mechanics.

9. Electrostatic forces

Many of the species commonly found in aqueous
two-phase systems are electrostatically charged, e.g.,

ions from phase-forming salts, ions from buffers
used to control the pH, proteins and occasionally
phase-forming polyelectrolytes. The effect of electro-
static forces can not be represented by any of the
methods previously reported here. Rather, it is
generally assumed that a term incorporating the
effect of electrostatic forces can be added on to the
chemical potential or free energy expression repre-
senting the other non-electrostatic forces. For exam-
ple,

A=A+ A%or pu=u) "+ (53)

where A is the Helmholtz free energy, A"" is the
contribution from non-electrostatic forces, A" is the
contribution from electrostatic forces, and where the
expression for the chemical potential, u;, of a
component i has a similar interpretation. Again note
that one can transform an expression for A into an
expression for u, and vice versa by the methods
outlined in the section on chemical thermodynamics.

The expressions for A" or ,u,,'.E are constructed by
numerous means, and rather than attempt to catalog
all of them here, I will focus on the underlying
theoretical ideas which are fewer in number. Exclud-
ing the numerous empirical approaches, there are
basically four distinct theoretical methods to treat the
effect of electrostatic forces in solution: (1) the
theory of Debye and Hiickel [82] and its various
modifications [83,28,84], (2) the mean spherical
approximation [73-77], (3) numerical integral equa-
tion solutions [85] and (4) molecular simulations
[86]. I will concentrate on No. 1 and No. 2 because
they give closed-form analytic expressions which are
relatively easier to use in separation applications.
Note that, while No. 3 and No. 4 yield more rigorous
results, they require a numerical solution for each set
of conditions and are, therefore, not widely used in
modeling aqueous two-phase systems.

9.1. The Debye—Hiickel theory and its
modifications

The earliest and simplest theory capable of ac-
counting for the observable behavior of solutions
containing charged species is that of Debye and
Hiickel [82]). They assumed that the electrostatic
potential (i) due to the distribution of ions i around
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a central ion j in a solution is given by the Poisson
equation of electrostatics given below. This assump-
tion replaces the solvent with a continuous medium
having no molecular characteristics in which the ions
are immersed. The Poisson equation is

Vi = 4:6 > zed, (54)
where e is the electronic charge, € is the dielectric
constant of the pure solvent, Z, is the valence of ion
i, p; 1s the number density of ion 7/ and g, is the
Ansatz or assumption for the distribution of ions i
around central ion j. Debye and Hiickel further
assumed that the ansatz for the distribution g, is
given by a Boltzmann-type exponential factor as
shown below.

R B Z,el/{,(’”) — e (r)
g,j(r) = exp % ~ | kT

where r is the distance radially outwards from the
central ion, k& is the Boltzmann constant, and the
other symbols have their previously defined interpre-
tation. The exponential in the ansatz in then linear-
ized as shown above, and the result inserted into the
Poisson equation. This transforms the equation from
a non-linear to a linear differential equation achiev-
ing an enormous simplification in the mathematics.
This simplification, however, makes the theory strict-
ly applicable to very dilute solutions only. Finally, a
boundary condition is imposed which says that the
electrostatic potential is zero very far away from the
central ion. The equation is then solved for the
electrostatic potential, ¢, giving,

(55)

v
4

e
r exp| — Kr] (56)

U =

where K is the inverse Debye length with units of
reciprocal length and defined by

,  dme’ 2
K== e (57)

i

where all the symbols have the usual interpretation.
The quantity 1/K approximately represents the maxi-
mum distance at which two charged species are
correlated, i.e., the maximum distance at which ions
can electrostatically ‘‘see” each other in a dilute
solution.

The details of the theoretical development from

here on are simple but rather tedious and probably
beyond the scope of this review. Thus, I refer the
reader to any of number of excellent monographs on
this subject [39,85]. Perhaps it should suffice to say
that the electrostatic potential, ¢, is integrated over
distance, used in charging process, and the result
summed over all of the ions in the salt s to give an
expression for the electrostatic contribution to the
chemical potential u® of the salt. The resulting
expression for u° is widely called the Debye—
Hiickel limiting law for electrolyte solutions.

,LE

A LR AR A (58)
where » is the number of positive (+) or negative
(—) ions in the salt, I=(c,/2) 2,, vZ} is the ionic
strength, the other symbols have the usual interpreta-
tion, and S, is the Debye-Hiickel slope defined by

B 27re®
Sy_ 63k3T3

(59)

The Debye—Hiickel limiting law captures the most
important physics of electrostatic interactions in very
dilute ionic solutions. It is a well-established and
rigorous result for dilute solutions of ions in a
solvent. Although, again one should note that due to
the linearization outlined above, it is strictly speak-
ing applicable only to ionic concentrations approach-
ing those in ordinary tap water! The theory, however,
is commonly used for solutions at reasonably high
1onic concentrations of up to 0.1 M or so with good
results. The deviation between theory and experi-
ment steadily increases with ion concentration as
expected. The reason for this seemly good fortune is
that the theory is accurate at dilute conditions where
electrostatics dominates behavior. At higher ion
concentrations where the assumptions in the theory
are starting to fail, the importance of electrostatics in
determining behavior is steadily decreasing because
the presence of so many ions tends to shield the
electrostatic charges from each other.

There have been a number of reasonable efforts to
develop improved theories based on the concepts of
Debye and Hiickel. These endeavors which fall
under the category of extended Debye—Hiickel
theories usually follow the same development meth-
od outlined for the limiting law, but they include the
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effect of ionic size or other interactions on the
electrostatic potential (¢;). Without exception, all of
these models reduce to the Debye—Hiickel limiting
law as the ionic strength approaches zero. None of
these approaches have the rigor of the limiting law
but they are necessary to extend the treatment of
electrolytes to higher ionic concentrations. Typically,
these extended electrostatic potentials have the fol-
lowing functional form,

ze
() “m—j exp[K(a,; —r)] (60)
where a;; is the distance of closest approach between
ions i and j.

Pitzer [83] used a statistical mechanical procedure
together with the electrostatic potential given above
to develop a semi-theoretical extended Debye—
Hiickel model for electrolyte solutions. The parame-
ter values for Pitzer’s model are available for many
different salts in water. Pailthorpe et al. [28] used the
basic development strategy of Debye and Hiickel
starting with the Poisson equation, but they included
a non-electrostatic interaction between ions in their
model for the electrostatic potential ;. They then
used a statistical mechanical procedure similar to
Pitzer’s to arrive at an expression for ,u,f. Perry et al.
[84] and Cabezas [87] used a different statistical
mechanical method and the electrostatic potential
given above to arrive at a model for ionic solutions.
Their expression for ,uf‘ from this model has approxi-
mately the following form:

E _ 1/2 2 4
l‘l’x SYI l: V+Z+

KT X e [ 1+a B
vizt 21@12+ v.z*
172 172 (61)
l+a_ _BJI l+a.BJ
where B is a solvent parameter defined by
B = 8 e’
» ¥ ekT (62)

and where # is the number of ions of type i in salt s,
a;; is the distance of closest approach of ions i and j,
and where the other symbols have the usual interpre-
tation.

9.2. Mean spherical approximation

The mean spherical approximation or MSA
[73,74] provides a general statistical mechanical
method for the development of models for the
behavior of solutions including ionic solutions [75—
77]). It does not make use of the Poisson equation
and it is not as strictly limited to dilute solutions.
The method consists of solving the Ornstein—Zernike
integral equation [69] with suitable boundary con-
ditions, also called closure conditions, and using the
energy equation to obtain an expression for the
internal energy of the solution. From the internal
energ)E/ one can obtain the following expression [88]
for u,.

E
M
kT~ [kT6<F21+ya> ZA"QP

(&) /e )

and where
P =—!15 Ek) %}—% (64)
T ckai
0= 1+ﬁ2 I3 Ta, (65)
471'e2
A=l-¢ & 4= Z cay at=—r (66)

where I’ is the inverse MSA shielding length playing
a role analogous to K in the Debye—Hiickel theory, n
is the number of ionic species present, e.g., two for
NaCl, and the other symbols have the usual interpre-
tation. There is no explicit equation for I, rather it is
obtained by numerically solving the non-linear equa-
tion,

S (7]

The MSA represents the next step in sophistication
from the Debye—Hiickel theory and its extensions. It
does capture more of the physics of ionic solutions.
Although, this comes at the price of a significantly
more complex theory lacking the simple intuitive
sense of the former approach. One specific issue is
the need for solving the implicit equation for I” at
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each concentration of interest. Another particularly
troubling aspect of the MSA is that it does not
reduce to the limiting law as the ionic concentration
approaches zero. Still, the MSA is a reasonable and
relatively simple means of representing the prop-
erties of ionic solutions.

9.3. Application to calculations

There is a last subtle point that needs to be
considered when using either the Debye-Hiickel
theory, one of its modifications, or a MSA model for
calculations at ordinary laboratory conditions, i.e.,
constant pressure and temperature [37]. The problem
is that all of these models do not treat the solvent as
a molecular fluid, rather they treat it as a background
continuum in which the ions exist. These models are
then in the same category as the McMillan—Mayer
viral expansion discussed earlier, and it is necessary
to convert these expressions to constant pressure by a
procedure similar to that used for the McMillan—
Mayer viral expansion. In fact, what the models give
is an expression for u"™"' at a pressure of P+
where 7r is the osmotic pressure of the solution,
while the required property for calculations is ,uf at
the pressure of the solution or the laboratory, P. The
conversion expression is

p (T, Poc)=pl ™ T, P+ m,c)

P
+ [ v -v]e (68)
Ptar

where Vf is the electrostatic part of the salt partial
molar volume, fo is the electrostatic part of the salt
partial molar volume at zero salt concentration and I7
is the osmotic pressure. The conversion given by the
integral above can often be neglected particularly if
the ior_liEc co_ncsgtgation is low so that 7 is small and
then V =~V =~ . However, this can not be auto-
matically done under all circumstances.

10. Summary

10.1. Why do we have so many models?

The state of knowledge of the theory of phase
formation and phase equilibria in aqueous two-phase

systems is populated by a veritable menagerie of
ideas, models and methods. This diversity seems to
have sown a fair degree of confusion with many
workers. Part of the difficulty here lies in the fact
that most of the models generally do represent the
experimental phase diagrams reasonably well. This
situation arises from the fact that the model parame-
ters are frequently but not always fitted either to the
data being modeled or to a closely related ex-
perimental measurement. In the hope of clarifying
these issues, I have already classified some of the
main ideas and offered some recommendations.

Still, why do we have so many models? The
existence of so many apparently reasonable models
is simply a reflection of our relatively poor under-
standing of liquids and liquid mixtures. The fact is
that a good comprehensive theory of liquids and
liquid mixtures is not available at the present time. In
the absence of a good fundamental theory, models
are developed by various combinations of theory and
empiricism yielding a wide range of possible out-
comes.

We can illustrate the reason for the existence of so
many models by revisiting osmotic viral expansions
and noting the many possibilities. These models are
based on the theory of McMillan and Mayer [24] or
on the theory of Hill [25,26]. Both are widely used
for aqueous two-phase systems [30,32,33,35]. The
parameters on these models are osmotic viral co-
efficients. These can either be treated as experimen-
tally measured quantities [32] or they can be
modeled. Models for the osmotic viral coefficients
can be based on scaling arguments [37] or other
approaches [35]. The models for the osmotic viral
coefficients contain molecular parameters whose
values must be evaluated from experimental data.
The data used in the parameter evaluation can be
from laser light scattering {32,33], vapor pressure
measurements [33], osmotic pressure measurements
[34,36], isopiestic experiments [38], or other sources.
Each decision that is made in the above sequence of
choices will in general yield a subtly different model.
If we also consider other fundamentally different
approaches such as lattice theories, the number of
possible outcomes grows very quickly.

To contrast this situation in liquid state theory, we
can consider the theory of the motion of large rigid
bodies. Here we do not see a myriad of models
because Newton’s equations quite adequately repre-
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sent the observed behavior. The reason is that the
motion of large rigid bodies is a relatively simple
physical phenomena for which a very good model
has been developed. The behavior of molecules in
the liquid state is, unfortunately, not as simple.
Although, it should be noted that the aforementioned
theoretical deficiency in liquid and liquid mixture
theory is not the case for all areas of physical
chemistry. We have for example a fairly good theory
of low pressure gases in the form of the viral
equation of state [89]. We also have good theories for
crystalline solids [90] based on perfect lattice statis-
tics. For low pressure gases and crystalline solids, we
have succeeded in developing good theories because
we have the ideal gas model and the perfect lattice as
simple and very well understood reference models to
start from. These reference models allow us to treat
the behavior of real gases and real crystalline solids
as perturbations on the behavior of the reference
models.

10.2. Some recommendations for the present

Given the present state of liquid and liquid
mixture theory and the existence of various ap-
proaches to modeling the phase behavior of aqueous
two-phase systems, can some guidance be offered to
the user of these models? Rather than offer a
preference for any particular approach, perhaps my
own, I would first prefer to answer the question by
discussing how models are constructed and illustrat-
ing how one chooses or develops a model. Later, 1
will give some more specific suggestions.

As already discussed, in the case of liquids and
liquid mixtures we do not have a good reference
model from which to start the development of a
theory. Consequently, all current liquid and liquid
mixture models are based on the approximate appli-
<. on of either gas theory or crystalline solid theory
along with varying degrees of empiricism. The
choice of either starting point depends on individual
views and the ultimate purpose of the model. For
example, if we base a model on gas theory, we are
lead to an osmotic viral expansion. This implies that
the component chemical potentials can be calculated
from the energies of interaction between small
numbers of solute molecules and solute—solvent
interactions as contained in solute partial molar

volumes. The resulting models are simple and do
provide some insight into the interaction between
solute molecules. However, they do not elucidate the
structure of the solution, i.e., how the solute and
solvent molecules are arranged, and they do not
easily gives familiar quantities such as the solution
entropy and enthalpy. Models based on crystalline
lattice theories imply that the component chemical
potentials can be calculated from some combinatorial
entropy expression with energetic corrections plus an
enthalpic contribution. They do provide the solution
entropy and enthalpy and, perhaps, some insight into
the structure of the solution. But, the model parame-
ters are macroscopic quantities that do not have a
clear molecular interpretation. It should also be
mentioned that these are not the only problems with
the liquid-state theory, but they are the most relevant
to the issues discussed here.

With these arguments in mind, one is then led to
conclude that liquid mixtures seem to have some
aspects which are like those of a gas and some which
are like those of a crystalline solid. Our choice of a
theoretical basis in our modeling work will give
results that will invariably represent some aspects of
the mixture better than others. Much as we may
want, these strengths and weaknesses can not be
driven out of our present models like evil spirits
exorcized by the incantation of clever parametriza-
tion schemes. Therefore, the modeler choosing a
theoretical basis has to decide at the beginning
exactly what will be expected from the resulting
model and be realistic about it. For the user of
models, the question is one of choosing a model
having the appropriate theoretical basis which allow
it to adequately represent the behavior that the user is
looking for. For example, a Flory—Huggins theory
would be unlikely to give good mixture volumes
because the volume change on mixing is assumed to
be zero in the theory, but enthalpies of mixing would
likely be well represented. Specific recommendations
are given for each individual model and the strengths
and weaknesses of each is discussed in the appro-
priate sections above. However, the ditferences
among the various models are sufficiently subtle that
it would be inappropriate to try to condense them
here in a brief table format, however desirable that
may seem.

In addition to the aforementioned issues regarding
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the theoretical basis of models, the user of a par-
ticular model is confronted with several very practi-
cal questions: (1) are the values for the model
parameters for the specific mixture of interest avail-
able? (2) If the parameter values are not available,
can they be measured easily? (3) Is there experimen-
tal data available from which values for the model
parameters could be obtained? (4) How difficult is it
to fit values for the model parameters? (5) Is the
model available in the form of a computer program
or must the program be generated? Quite frankly, the
answer to each of these questions will vary widely
from one model to another, and it will often ulti-
mately determine the choice of model.

10.3. Some recommendations for future work

The various models presently available for the
phase behavior of polymer—polymer and salt—poly-
mer aqueous two-phase systems do adequately repre-
sent experimentally observed phase behavior in
general. Although, it is quite true that all models are
not exactly equal. For example, some reproduce
phase diagrams more accurately than others, some
have a physical basis which is firmer than that of
others, and there are still other differences such as
the fact that some include the polymer molecular
mass dependence while others include the tempera-
ture dependence, etc. However, from a practical
point of view any of these models could with varying
degrees of difficulty be used to calculate reasonably
accurate a priori phase diagrams for most aqueous
two-phase systems. Therefore, it seems to me that
the principal practical value of the modeling work up
to the present has been to reduce the amount of
required experimental data to a minimum. Regard-
less of my previous criticism, minimizing the need
for experimental data is by itself quite an important
contribution.

However, there are a number of fundamental
deficiencies in all current models. The first one is
that each model is a theoretically or empirically
based correlation valid over a limited range of
conditions such as temperature, polymer molecular
mass, composition, etc. If a model is used outside the
range of conditions under which its parameters were
evaluated, the results may or may not be accurate,
i.e., our present models are not nearly as general as

we would like. This difficulty can be addressed by
establishing a critically evaluated data set for well
characterized two-phase systems over a wider range
of conditions and using this data in the evaluation of
model parameters in the future. The characterization
should include temperature, pressure, phase com-
position of all components including residual salts,
molecular mass and polydispersity of the polymers
used and fractionation of the polymers between the
phases. The second deficiency is that the information
that the models provide regarding molecular interac-
tions and solution structure is limited, although well
appreciated. Solution structure information, in par-
ticular, is going to be essential for the field to move
forward. For example, solution structure would be
extremely important if we were to further pursue the
analogy between phase separation in cytoplasm and
phase formation in aqueous two-phase systems [91].
There are number of steps that can be taken to
address this deficiency: (1) include more realistic
models for the molecular interactions in our models,
(2) expand neutron [6] and light scattering studies
[32,33] on some selected aqueous two-phase systems
with the objective of providing some real structure
information on mixtures of water and phase forming
polymers and salts, (3) take a fresh look at either
Monte Carlo or molecular dynamic computer simula-
tions [86] for providing information on the structure
of the phases or perform studies based on integral
equations [92] as a simpler alternative. The third
deficiency is that there is not a single model in
existence which incorporates all of the knowledge
that we now have about phase behavior in aqueous
two-phase systems. For example, one model will
include polymer molecular mass dependence but
neglect polydispersity, and yet another one will
include temperature dependence but neglect other
issues and so on. The fact is that the field is now
“ripe” for a collaborative effort to assemble a state-
of-the-art model incorporating all of the best ideas
that have been developed over the last decade. It
would be impossible to prescribe all of the details of
this model, but the basic elements that need to be
included can be easily listed here, and these are: (1)
the effect of polydispersity and the fractionation of
the polymers between the phases, (2) the polymer
molecular mass dependence of the phase diagram,
(3) the temperature dependence of the phase diagram
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and (4) combining an osmotic viral expansion for the
dilute regime and some form of a lattice theory for
the more concentrated regime. These are subtle but
very important issues if we are to make the resulting
models widely useful. It is not very difficult to
include polymer polydispersity, fractionation, and
polymer molecular mass dependence using the meth-
ods previously outlined in the present article. For
example, the phase diagram dependence on polymer
molecular mass can be well represented by use of
scaling arguments. The other items, however, require
further thought and study but they are still well
within the realm of the possible on a short term
basis. For example, a lattice theory could be modi-
fied to incorporate a reasonable representation of
temperature dependence and to yield a theoretically
correct osmotic viral expansion at low solute con-
centration.

Lastly, it should be mentioned that the develop-
ment of theoretical models for the phase behavior of
aqueous two-phase systems formed with polyelec-
trolytes as phase-forming polymers seems to have
attracted little attention. However, if we are to fully
explore the analogy between phase separation in
cytoplasm and phase formation in aqueous two-phase
systems [91], then phase-forming polyelectrolytes
will become important. The reason is that the phase-
forming macromolecules in cytoplasm are likely to
be polyelectrolytes. These may be linear such as
DNA and RNA or compact bodies such as most
proteins. The starting point for the construction of
such models would be to incorporate known results
for linear polyelectrolyte solutions [93-95] into the
theory of aqueous two-phase systems. For compact
polyelectrolytes it may well be possible to use the
theories that have been developed for protein parti-
tioning as a starting point [66,96-98]. The actual
model could be built by adding appropriately modi-
fied polyelectrolyte terms to component chemical
potential expressions in a manner similar to that
presented in the section on electrostatic forces.

In summary, aqueous two-phase systems exhibit
rather interesting and often very complex behavior.
This has led to a wide range of very exciting
applications in both science and technology which
continue to expand. We now have a basic under-
standing of some but not all of this behavior. There
is presently an opportunity to make significant

progress in our ability to model and predict the phase
behavior of aqueous two-phase systems, and there
are exciting new applications on the horizon.

11. List of symbols

A Helmholtz free energy (J mol_l)

AYF Contribution to the Helmholtz free
energy from non-electrostatic interac-
tions (J mol ')

A" Contribution to the Helmholtz free
energy from electrostatic interactions
Jmol™")

Ap Modified excess Helmholtz free

energy defined by A =A—Nyuy
Afyns Contribution to the modified excess
Helmholtz free energy from hard
sphere interactions (J mol ")
Contribution to the modified excess
Helmholtz free energy from non-ad-
ditivity of hard sphere molecular
diameters (J mol ")
Ion charging contribution to the modi-
fied excess Helmholtz free energy
(Jmol™")
Contribution to the modified excess
Helmholtz free energy from charge—
charge interactions (J mol ")
Contribution to the modified excess
Helmholtz free energy from short
range interactions (J mol ")
AA Helmholtz free energy of mixing
(Jmol™ ")
Interaction constant for solutes i and j
Interaction constant for solutes i, j,
and k
a; Mole fraction scale thermodynamic
activity of component i (mol mol ')
or size parameter of ion i (m or A)
a;. Interaction parameter between group i
and group j or distance of closest
approach of ions i and j (m)

a,; Empirical interaction coefficients be-
tween component i and j (kg2 mol ~%)
B; McMillan~-Mayer second osmotic

viral coefficient for components i and
j (Imol™")
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Hill theory second osmotic viral co-
efficient for components i and j
(mol mol ™" or kg mol ™)
McMillan—-Mayer second osmotic
viral coefficient for salt s and polymer
p (1mol™")
Debye—Hiickel
(11/2mm01—1/2)
Scaling proportionality constant for
polymer end to end distance (m)
Scaling proportionality constant for
the interaction between ion { and
polymer p (1 mol™")
Concentration  of
(mol1™")
Cross-over concentration at which
polymer chains start to overlap in
solution (mol17")

Concentration of component ¢ in
phase j (moll1™ ")

Mass density of pure water (kg1 ')
Electronic charge (J''* m'’?)
Lansing-Kraemer function for the
molecular mass distribution of poly-
disperse component i

Arbitrary function of x;

Molar Gibbs free energy of a mixture
(Jmol ™)

Molar excess Gibbs free energy of a
mixture (J mol ')

Electrostatic excess Gibbs free energy
of a mixture (J mol™ ')

Molar Gibbs free energy of an ideal
mixture (J mol ")

Molar Gibbs free energy of mixing
(mol ™)

Ansatz for the distribution of ions i
around a central ion j

Hermite polynomial

Ionic strength (mol1™")

Boltzmann’s constant (J K™)

Length of a polymer chain along the
backbone (m)

Molecular mass of a polymer p
(kg mol ™)

Molecular mass of component i or of
polymer fraction i (kg mol ')
Adjustable parameter for component i

solvent  parameter

component i

in Lansing—Kraemer function, F(M,)
(kg mol ")

Number averaged molecular mass of
polymer i (kg mol ")

Mass averaged molecular mass of
polymer i (kg mol ")

Molecular mass of the k fraction of
polymer i (kg mol™')

Molality of component i (mol mol ")
or (mol kgfl) where the two units are
related by 1000/M,

Total number of moles in a phase
(mol)

Moles of component i in a phase, mol
or degree of polymerization of poly-
mer i

Number of moles of water (mol)
Pressure of the system (Pa)

Surface area parameter for group k
(m®)

Surface area parameter of component
or polymer blob i (m?)

Mass-based surface area parameter of
component i (mz)

Universal gas constant (Jmol ' K™")
End-to-end distance of a polymer
chain in solution (m or A)

Distance radially outwards from the
central ion in the Debye-Hiickel
theory (m or /o\)

Radius of gyration of a polymer chain
in solution (m or ;\)

Symbol for the position vector of the
center of mass of a molecule i
Mass-based volume parameter for
component { (m?)

Entropy of a mixture (Jmol ' K™")
Entropy of mixing (Jmol ' K™")
Debye—Hiickel slope (1'"* mol %)
Temperature of the system (K)
Internal energy of mixing of a mixture
(Jmol™ )

Molecular interaction parameter for
components i and j (J mol™")

Energy of interaction between a pair
of molecules i and j (J)

Partial molar volume of component i
(Imol™")
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Electrostatic  contribution to the
partial molar volume of component i
(1mol ™ ")

Electrostatic contribution to the partial
molar volume of component i at
infinite dilution or zero concentration
of component i (1 mol ')

Partial molar volume of component i
at zero concentration of component i
(Imol™")

Partial molar volume of a monomer of
polymer i at zero polymer concen-
tration (1 mol ")

Effective excluded volume parameter
(m*)

Total mass of solute i in all phases
(kg)

Mass of component i in phase j (kg)
Total mass of all components in phase
Jj (kg)

Weight factor in expansion for frac-
tion k in polymer i

Mass fraction of component 7 in phase
J(kgkg )

Mass fraction of component p in
solution (kgkg ")

Mass fraction of the k fraction of
polymer i (kgkg ')

Mol fraction of component i
(mol mol ') or variable for compo-
nent i

Reference mol fraction of component
i (molmol ")

Valence of ion i

Lattice coordination number (i.e.,
number of nearest neighbors to a
molecule

Zero of Hermite polynomial for frac-
tion k of polymer i

Non-randomness NRTL parameter
Adjustable parameter for component i
in Lansing—Kraemer function, F(M,)
MSA inverse length (m ")

Dielectric constant of pure solvent
Monomer size (m)

Relative surface fraction of solute i
Surface fraction of group k in mole-
cule i

K
K

K

3

o(M,)

A SIS ]

B

Debye—Hiickel inverse length (m ")
Isothermal compressibility of pure
solvent (Pa™ ')

Correlation length of polymer in a
concentrated solution or polymer blob
size (m)

An arbitrary function of polymer mo-
lecular mass, M,

Area fraction of polymer blob i
Mass based surface area fraction of
component |

Volume fraction of component or
polymer blob i in a mixture, x,V./>, ;

xV.

l\ila{ss based volume fraction of com-
ponent i

Molar density of pure solvent
(mol17")

The number pi or the osmotic pressure
of a solution (Pa)

Scaling exponent for salt—polymer
interactions

Chemical potential of component i
(mol™")

Chemical potential of solute i in phase
j Jmol™h)

Reference chemical potential of solute
i Jmol™")

Chemical potential of component i in
an ideal mixture (J mol ")
Contribution to the chemical potential
of component i from non—
electrostatic interactions (J mol ')
Contribution to the chemical potential
of component i from electrostatic
interactions (J mol ")

Chemical potential of water (J mol ')
Universal scaling exponent for poly-
mer end to end distance

Number of ions in salt s

Number of ions of type i in a salt s
Number of groups of type k in mole-
cule |

Flory-Huggins interaction parameter
between components i and j

Number of possible configurations
available to a system

Electrostatic potential around ion (i)
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w, Symbol for the orientation angles of
molecule i
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